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F i o r y  A p p r o x i m a n t  for Se l f -Avoid ing  
W a l k s  on Frac ta l s  
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A Flory approximant for the exponent describing the end-to-end distance of a 
self-avoiding walk (SAW) on fractals is derived. The approximant involves the 
fractal dimensionalities of the backbone and of the minimal path, and the 
exponent describing the resistance of the fractal. The approximant yields values 
which are very close to those available from exact and numerical calculations. 
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The statistics of self-avoiding walks (SAWs) has been the subject of much 
interest for a long timeJ 1'2) These are relevant to the behavior of single 
polymer chains in good solvents. The mean square end-to-end distance of a 
chain of N monomers scales (for large N) as ( R  2) ~ N 2v, and the universal 
exponent v depends only on a few characteristics of the space on which the 
walk is embedded. 

On Eucledean d-dimensional spaces, v depends only on d. An excellent 
(although not exact) estimate for v, in d~<4, is given by the Flory 
formula,(2'2 

v = 3/(2 + d) (1) 

In the present paper we present a new glory formula, to describe 
SAWs on fractal structures. It has been known since 1980 that critical 
phenomena depend crucially on various fractal characteristics of the 
underlying structure. (3) It has since become clear that in addition to the 
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fractal dimensionality D, (4) physics on fractals depends on many other 
dimensionalities, (5) including the fractal dimensionality of the backbone 
De,  that of the minimal (or chemical) path drain, (6) etc. It has also become 
clear that regular random walks on fractals have an anomalous fractal 
dimensionality dw, (7) and that the spectrum of vibrational excitations on 
fractals is characterized by the fracton dimensionality d =  2D/dw .(8'9) 

In view of this plenitude of dimensionalities, it became a challenge to 
find a modified Flory formula for SAWs on fractals. It was already noted 
by Dhar (1~ that the fractal dimensionality D may not be sufficient to 
characterize v. However, Kremer (11) found that if one replaces d by D in 
Eq. (1), then the expression 

v = 3/(2 + D )  (2) 

is in good agreement with Monte Carlo simulations of walks on per- 
colation clusters at the threshold. Equation (2) also agreed with real space 
renormalization group results. (12) 

The expression (2) was criticized by Rammal etal., (~3) who argued 
that since the SAW moves only on the backbone (or else it would be 
trapped on a dangling end), v should depend only on properties of the 
backbone (and not on D). Rammal et al. derived the modified expression 

1 2+c~ 2 + ~  
v = D---~ 1 + (2e/de) -- De + dw, B~ (3) 

where dw, e is the fractal dimensionality of random walks on the backbone, 
de=2De/dw, e, and e is a random walk exponent discussed below. 
Arbitrarily ("for simplicity") they chose to use c~ = 1 (in their notation, 
z = 2/de) and found 

1 3ar 3 
V = D e d e + 2  d~,B+De (4) 

Equation (4) gave unsatisfactory agreement with exact fractals, and 
Rammal et at. concluded with doubts on the existence of a general Flory 
approximation which retains both simplicity and accuracy. 

Recently Havlin and Ben Avraham (HBA) (~4) gave an alternate 
discussion leading to Eq. (3) and made a suggestion which amounted to 
setting 

1 
= - -  ( 5 )  ra in  dw. e -  1 

rain_ dw, B/drnin is the fractal dimension of random walks on the where dw, e - 
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backbone measured in a chemical, or minimum, distance metric. HBA 
showed that the choice (5) gave satisfactory results for v in several cases. 
However, as explained below, their arguments involved several arbitrary 
steps whose justification was not clear. The purpose of this paper is to 
present a complete physical justification for (3) and (5). In particular, our 
discussion explains the difference between the Pythagorean and the 
chemical metrics, in terms of "annealed" and "quenched" averages. 

In the "standard" derivation of the Flory formula, one writes the free 
energy as the sum of energetic and entropic terms, both depending on R 
and on N, (13) 

F= a(N2/R D~) + b(Ra~.~/N) ~ (6) 

Minimization with respect to R yields Eq. (3). In the potential energy 
part, R DB represents the number of sites on the backbone, within radius R, 
in which the SAW might self-interact. The entropic part arises from the 
probability of a regular random walker to reach a distance R after N steps 
on the backbone, P(R, N). The function P(R, N) has been the subject of 
several recent publications. Since the dependence on R is expected to arise 
via the scaled variable (Raw,B/N), and since for large R one expects an 
exponential decay, it is reasonable to expect that 

P(R, N) ~ exp [ - b(Raw.B/N) ~ ] (7) 

which indeed yields the form (6). The exponent ~ is in fact defined via 
Eq.(7). The value of ~ has been the subject of some confusion: 
O'Shaughnessy and Procaccia (15) guessed that e = 1, and Havlin et al. O4'16) 
proposed (based on some exact fractals) that e = 1/(dw,B--1). (17) Although 
the value a =  1 chosen by Rammal etal. ~3) agrees with that of ref. 15, we 
have recently shown (18) that it is wrong. In fact, the value of a depends on 
the type of averaging used. If one considers only typical walks, which is 
equivalent to averaging of In P(R, N), then (~8) 

= d m i n / ( d w , B  - drain) (8) 

On the other hand, averaging of P(R, N) over all possible starting points 
and local geometries, including very rare ones, yields (~s) 

~= l/(dw,e- 1) (9) 

It was argued in ref. 18 that for averages over finite few samples, ~ may 
turn out to be between these two limits. 

In the present case, the free energy (6) contains the entropy, i.e., 
- l n  P(R, N). Simulat ionsover  different samples yield different values of 
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the free energy, or of the sizes of the SAWs, and these are then averaged. 
This is similar to the "quenched" average appropriate for thermodynamic 
properties of random systems, in which the free energy is to be averaged, 
and distinct from the "annealed" case, when the random variables move on 
the time scale of the experiment and must be included in the distribution 
(or partition) function itself, i.e., P(R, N). It therefore follows from ref. 18 
that we should use Eq. (8) for ~. Using also dw, B = D ~ +  ~R, (5'7) where ~'~ 
describes the scaling of the resistance between two points on the fractal, 
Eq. (3) yields 

2DB + 2~'R - dmin 
v = ( 1 0 )  

drain ~'R + DB 2 + DB'fR 

It is interesting to note that Eq. (8) is equivalent to Eq. (5), proposed 
rain = dw,B/dmin. However, their discussion by HBA, in view of the relation dw. ~ 

seemed to require measuring distances in a chemical distance metric. In 
their formulation (in our notation) one uses the relation l ~  R ami" to write 
(6) in terms of h 

F,,~ a(N/l o,/am,.) + b(lawm~/N)~mm (11 ) 

where ~min is the corresponding exponent when P(R, N) is likewise 
expressed in terms of l: 

P(I, N) ~ exp [ - a(law%/U) ~m~n ] (12) 

It might seem, then, that here one has the equivalent question, i.e., what is 
~ ~]min 1 ~ -- 1, the correct value of ~min? However, HBA argue that ~min ~ ~"w,B- ~ a 

result which is rigorously derived in ref. 18. Their argument thus seems to 
sidestep the question of what value of ~ one should use. However, in the 
HBA argument the role of the chemical distance metric is unclear. As they 
say, one can use either normal or chemical metrics. "The chemical space is 
used [to agree with the] exact results of percolation in d = 1 and d =  6. The 
Flory approximation, using normal Pythagorean space, fails in these 
cases." We disagree with the statement concerning Pythagorean space. We 
believe one can work in any metric, providing the proper value of ~ is used. 
In particular, in Pythagorean space, ~ should be set by Eq. (8), according 
to our argument concerning quenched averages. The reason the HBA 
formulation works in chemical space is that only in chemical space do the 
quenched and annealed averages become identical. Using Eq. (8) yields 
Eq. (10) in all metrics. 

We now discuss the implications of Eq. (10). Whenever loops are 
irrelevant, the backbone, the minimal path, and the resistance all scale the 
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same way, i.e., DB=~'R=dmi,.  In this case, Eq. (10) yields v =  1/DB, as 
expected (since there is practically only one SAW, which also scales like the 
minimal path). In this case, we have c~ = 1 and our result coincides with 
that of Rammal et al., Eq. (4). One case to which this applies is percolation 
for d >  6, where we recover v = 1/2, as expected. Another case of interest 
concerns lattice animals. (12) Using measured values of ~'R from ref. 19, we 
find v --- 1, 0.85, 0.74, 0.67, and 0.5 for lattice animals in d = 1, 2, 3, 4, and 8 
dimensions. The value at d = 2 is not far from that of real space renor- 
realization group estimate, (j2) v~0.80.  It is interesting to note that 
Kremer's formula, Eq. (2), yields v = 1, 0.84, 0.75, 0.68, and 0.5, very close 
to our values of 1/DB. This suggests the new approximate relation 
DB -- (D + 2)/3 between the fractal dimensionalities of the full cluster and 
its backbone for lattice animals. This approximation agrees with the data 
for ~'R = DB and D of ref. 19 to within their error bars. For animals the 
Flory formula (2~ D = (2d+ 4)/5 gives exact results for d =  3, 4, and 8. We 
therefore suggest the Flory-like approximant for 2 ~< d~< 8: 

D B = (2d+ 14)/15 (13) 

The situation becomes more complicated for fractals with loops. In his 
pioneering work, Dhar (1~ solved exactly the SAW problem on the 
Sierpinski gaskets in 2 and 3 dimensions. The two-dimensional results were 
then extended, by Elezovi6 etaL, (2~) to a family of generalized gaskets, 
containing b(b+ 1)/2 triangles in a large triangle of linear size b. For  
b = 2, 3,..., 8 they found v = 0.7986, 0.7936, 0.7884, 0.7840, 0.7803, 0.7772, 
and 0.7744. Our Eq. (10) yields v=0.8249, 0.8137, 0.8065, 0.8014, 0.7976, 
0.7946, and 0.7921, all within 3% from the exact values. This is to be con- 
trasted with Rammal etal.'s (~3) approximant, Eq.(4), which yields 
v=0.7679, 0.7584, 0.7525, 0.7485, 0.7455, 0.7432, and 0.7413, whose 
deviations from the exact results are about twice those of our Eq. (10). 
Kremer's approximant, Eq. (2), typically overestimates the exact results by 
about 4%. Similar comparisons apply to the branching Koch curve. (~3) In 
contrast, Rammal etal.'s value, v=0.654, is closer to the exact result 
for the three-dimensional gasket, v=0.674, (~~ than our approximant, 
v = 0.725. 

Finally, we consider SAWs on the infinite percolation cluster at the 
percolation threshold. Table I lists values of D, as collected in ref. 22, of 
Ds,  as collected in ref. 23, and of (R and drain, based on series evaluations 
from ref. 24. Typical errors in these numbers are a few percent. The 
resulting estimates of Eq. (10) are practically indistinguishable from 
available literature values. They are also in excellent agreement with new 
series values for SAWs on percolation clusters. (26) The value v=0.66 in 
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Estimates for  the Flory Approx imant  for the S A W  Exponent v on 
Percolat ion Clusters a 

d D Ds ~R drain Eq. (2) Eq. (4) Eq, (10) Other 

2 91/48 1.62 0.99 1.13 0.77 0.71 0.76 0.77,1tzJ 0.661251 

3 2.5 1.83 1,31 1.36 0.67 0.60 0.65 0.67 tm 

�9 4 3.2 1.94 1.59 1.62 0.58 0.55 0.58 

~<6 4 2 2 2 1/2 1/2 1/2 - -  

a Equations (2), (4), and (10) represent the approximants of Kremer, m) Rammal et al., ~13) and 
the present work, respectively. 

d =  2, from ref. 25, is probably too low because the algorithm used only 
walks which connect two fixed terminals, at a fixed end-to-end distance. 
Again, Eq. (10) gives a much more satisfactory approximant than Rammal 
et al.'s approximant, Eq. (4). We note again the closeness of the values 
from Eqs. (2) and (10), which may imply a useful approximate numerical 
relation between D, DB, CR, and dmin. Specifically, this approximate 
relation implies that 

3 2DB + 2~R -- d~in 
(14) 

2 + D  d~in~R + DB2 + D "(R 

In conclusion, we have shown that the correct theory for regular ran- 
dom walks also yields a good Flory approximant for SAW on fractals. As 
anticipated by Rammal et al. (13), this Flory approximant is not very simple, 
and it involves three geometrical dimensionalities, DB, ~'R, and dmi n. It 
would be interesting to compare our new approximant with much more 
accurate Monte Carlo or exact enumeration calculations. 

After concluding this work, we received a preprint by J. P. Bouchaud 
and A. Georges (ENS, Paris), who obtain the same approximant as our 
Eq. (10) using a different statistical approach. 
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